ReSidence研究装置/卡尔斯鲁厄理工学院(KIT)+FibR GmbH
ReSidence Research Installation / Karlsruhe Institute of Technology (KIT) + FibR GmbH
项目亮点:可持续材料的巧妙运用:该项目最令人瞩目的亮点在于其对可持续材料的深度挖掘和创新应用。建筑师巧妙地将柳树、泥土、亚麻和木材等天然材料结合起来,构建出低排放、结构有效的建筑元素。这种对传统材料的重新审视和现代化改造,不仅体现了对环境保护的深刻理解,也为建筑设计带来了新的可能性。特别是柳树在结构加固方面的应用,以及土壤在压缩中的作用,都展现了材料科学与建筑设计的完美结合,颠覆了传统建筑材料的认知,赋予了建筑新的生命力。
项目亮点:模块化设计与循环经济理念:项目的模块化设计是其另一大亮点,这种设计理念贯穿于建筑的各个组成部分。3.6 x 1.2米的混合土柳木元素嵌入木框架,立面系统采用亚麻纤维复合材料,都体现了模块化设计的灵活性和高效性。更重要的是,这种设计理念与循环经济的理念完美契合。建筑的每一个组件都可以在不产生浪费的情况下被拆除,构成材料可以被回收利用或在其他项目中重新使用。这种设计模式为建筑的生命周期提供了新的思考,也为建筑行业的可持续发展提供了有益的借鉴。
项目亮点:数字技术与可持续设计的融合:ReSidence 巧妙地将数字建筑技术与可持续设计理念相结合,这是该项目的核心精髓。数字工具在设计探索、结构模拟和建筑技术进步中发挥着关键作用,推动了从概念到制造的全过程创新。这种融合不仅提升了设计的效率和精准度,也为可持续建筑实践提供了新的思路。通过整合数字技术和天然材料,项目探索了材料之间的相互作用及其在结构应用中的潜力,突出了对可持续建筑实践的积极探索,为未来建筑设计的发展方向提供了有价值的参考。
© DDF_KIT
© DDF_KIT
建筑师提供的文字描述。ReSidence通过将天然材料与低冲击数字制造技术相结合,提出了一种前瞻性的多层建筑方法。柳树、泥土、亚麻和木材的结合展示了天然材料固有的挑战如何转化为机遇,使建筑师能够积极塑造和设计变化。受传统半木结构建筑技术的启发,柳树和泥土作为非结构性填充物,该项目将这些材料协同结合成低排放、结构有效的建筑元素。
Text description provided by the architects. ReSidence presents a forward-looking approach to multi-storey construction by uniting natural materials with low-impact digital fabrication techniques. The combination of willow, earth, flax, and wood demonstrates how challenges inherent to natural materials can be transformed into opportunities, empowering architects to actively shape and design change. Inspired by traditional half-timbered construction techniques, where willow and earth serve as non-structural infill, this project synergistically combines these materials into low-emission, structurally effective building elements.
© DDF_KIT
Drawing - Axonometry Residence
© DDF_KIT
建筑概念依赖于模块化配置,其中3.6 x 1.2米的混合土柳木元素被开槽到木框架中。天花板组件不仅增强了建筑的结构功能,还引入了独特的建筑特征,反映了形式和材料的周到融合。立面系统由亚麻纤维复合材料元件组成,这些元件跨越主要承重结构之间的区域,并承载点支撑立面。这种模块化设计确保每个组件都可以在不产生浪费的情况下被移除,从而支持真正的闭环材料生命周期。解构后,组成材料——柳树、泥土、亚麻和木材——可以通过当地的材料循环归还,也可以在不同的项目中作为组件重新使用。
The architectural concept relies on a modular configuration in which the 3.6 x 1.2-meter hybrid earth-willow-timber elements are slotted into a timber frame. The ceiling slab components not only enhance the building's structural function but also introduce a distinctive architectural character that reflects a thoughtful integration of form and materiality. The façade system consists of flax fiber composite elements that span the area between the primary load-bearing structure and carry the point-supported façade. This modular design ensures that each component can be removed without generating waste, supporting a truly closed-loop material lifecycle. After deconstruction, the constituent materials—willow, earth, flax, and wood—can be returned via local material cycles or reused as components in different projects.
© DDF_KIT
柳树被用作抗拉钢筋,并被布置成空间“钢筋”结构,而土壤在压缩中起作用,形成稳定的模块,与钢筋混凝土的性能相呼应,同时显著减少对环境的影响。亚麻纤维和木材补充了这些材料,促进了促进封闭材料循环和支持循环当地生物经济的混合系统。这些材料及其制造过程中涉及的新工艺是设计的驱动力,激发了将可持续性与设计探索相结合的建筑新方法。反过来,这些方法可以用天然材料的质感来丰富建筑的表达,庆祝形式和功能之间的对话。ReSidence使用的材料——泥土、柳树、亚麻和木材——经过精心挑选,具有可持续性和促进封闭材料循环的能力,有助于当地的循环生物经济。对当地资源的重视,如生长在重新湿润的沼泽地上的柳树,突显了一项旨在减少二氧化碳排放的生态战略₂ 排放,同时保持农业生产力。
Willow is used as a tensile reinforcement and is arranged into spatial 'rebar' structures, while earth acts in compression, forming stable modules that echo the performance of steel-reinforced concrete yet significantly reduce environmental impact. Flax fibers and timber complement these materials, facilitating a hybrid system that promotes closed material cycles and supports a circular local bio-economy. These materials and the novel processes involved in their fabrication act as design drivers, inspiring new approaches to architecture that merge sustainability with design exploration. In turn, these approaches may enrich the building's expression with the textural qualities of natural materials, celebrating a dialogue between form and function. The materials used in ReSidence—earth, willow, flax, and wood—were carefully selected for their sustainability and ability to promote closed material cycles, contributing to a local circular bio-economy. The emphasis on local resources, such as willow grown on rewetted moorlands, underscores an ecological strategy aimed at reducing CO₂ emissions while maintaining agricultural productivity.
© DDF_KIT
数字建筑技术的研究构成了该项目的基础,促进了从最初概念到最终制造的创新。数字工具在设计探索、结构模拟和建筑技术进步中发挥了至关重要的作用。这种方法强调了数字和可持续建筑、建筑和结构设计、组件测试和生命周期评估之间协同研究的重要性。通过整合这些领域,该项目探索了材料之间的相互作用及其在结构应用中的潜力,突出了该项目对改变可持续建筑实践的承诺。
Research in digital construction technologies formed the foundation of the project, fostering innovation from initial concept to final fabrication. Digital tools played a crucial role in design exploration, structural simulations, and the advancement of construction techniques. This approach underscored the importance of synergistic research across digital and sustainable construction, building and structural design, component testing, and life cycle assessment. By integrating these fields, the project explored the interaction between materials and their potential for structural applications, highlighting the project's commitment to transforming sustainable building practices.
© DDF_KIT